Main content
Algebra basics (ASL)
Course: Algebra basics (ASL) > Unit 4
Lesson 6: Slope-intercept form intro (ASL)Intro to slope-intercept form
Learn about the slope-intercept form of two-variable linear equations, and how to interpret it to find the slope and y-intercept of their line.
What you should be familiar with before taking this lesson
- You should know what two-variable linear equations are. Specifically, you should know that the graph of such equations is a line. If this is new to you, check out our intro to two-variable equations.
- You should also be familiar with the following properties of linear equations: y-intercept and x-intercept and slope.
What you will learn in this lesson
- What is the slope-intercept form of two-variable linear equations
- How to find the slope and the y-intercept of a line from its slope-intercept equation
- How to find the equation of a line given its slope and y-intercept
What is slope-intercept form?
Slope-intercept is a specific form of linear equations. It has the following general structure. Drum roll ...
Here, start color #ed5fa6, m, end color #ed5fa6 and start color #0d923f, b, end color #0d923f can be any two real numbers. For example, these are linear equations in slope-intercept form:
- y, equals, 2, x, plus, 1
- y, equals, minus, 3, x, plus, 2, point, 7
- y, equals, 10, minus, 100, x
On the other hand, these linear equations are not in slope-intercept form:
- 2, x, plus, 3, y, equals, 5
- y, minus, 3, equals, 2, left parenthesis, x, minus, 1, right parenthesis
- x, equals, 4, y, minus, 7
Slope-intercept is the most prominent form of linear equations. Let's dig deeper to learn why this is so.
The coefficients in slope-intercept form
Besides being neat and simplified, slope-intercept form's advantage is that it gives two main features of the line it represents:
- The slope is start color #ed5fa6, m, end color #ed5fa6.
- The y-coordinate of the y-intercept is start color #0d923f, b, end color #0d923f. In other words, the line's y-intercept is at left parenthesis, 0, comma, start color #0d923f, b, end color #0d923f, right parenthesis.
For example, the line y, equals, start color #ed5fa6, 2, end color #ed5fa6, x, start color #0d923f, plus, 1, end color #0d923f has a slope of start color #ed5fa6, 2, end color #ed5fa6 and a y-intercept at left parenthesis, 0, comma, start color #0d923f, 1, end color #0d923f, right parenthesis:
The fact that this form gives the slope and the y-intercept is the reason why it is called slope-intercept in the first place!
Check your understanding
Why does this work?
You might be wondering how it is that in slope-intercept form, start color #ed5fa6, m, end color #ed5fa6 gives the slope and start color #0d923f, b, end color #0d923f gives the y-intercept.
Can this be some sort of magic? Well, it certainly is not magic. In math, there's always a justification. In this section we'll take a look at this property using the equation y, equals, start color #ed5fa6, 2, end color #ed5fa6, x, plus, start color #0d923f, 1, end color #0d923f as an example.
Why start color #0d923f, b, end color #0d923f gives the y-intercept
At the y-intercept, the x-value is always zero. So if we want to find the y-intercept of y, equals, start color #ed5fa6, 2, end color #ed5fa6, x, plus, start color #0d923f, 1, end color #0d923f, we should substitute x, equals, 0 and solve for y.
We see that at the y-intercept, start color #ed5fa6, 2, end color #ed5fa6, x becomes zero, and therefore we are left with y, equals, start color #0d923f, 1, end color #0d923f.
Why start color #ed5fa6, m, end color #ed5fa6 gives the slope
Let's refresh our memories about what slope is exactly. Slope is the ratio of the change in y over the change in x between any two points on the line.
If we take two points where the change in x is exactly 1 unit, then the change in y will be equal to the slope itself.
Now let's look at what happens to the y-values in the equation y, equals, start color #ed5fa6, 2, end color #ed5fa6, x, plus, start color #0d923f, 1, end color #0d923f as the x-values constantly increase by 1 unit.
x | y | |||
---|---|---|---|---|
0 | start color #0d923f, 1, end color #0d923f, plus, 0, dot, start color #ed5fa6, 2, end color #ed5fa6 | equals, start color #0d923f, 1, end color #0d923f | ||
1 | start color #0d923f, 1, end color #0d923f, plus, 1, dot, start color #ed5fa6, 2, end color #ed5fa6 | equals, start color #0d923f, 1, end color #0d923f, plus, start color #ed5fa6, 2, end color #ed5fa6 | ||
2 | start color #0d923f, 1, end color #0d923f, plus, 2, dot, start color #ed5fa6, 2, end color #ed5fa6 | equals, start color #0d923f, 1, end color #0d923f, plus, start color #ed5fa6, 2, end color #ed5fa6, plus, start color #ed5fa6, 2, end color #ed5fa6 | ||
3 | start color #0d923f, 1, end color #0d923f, plus, 3, dot, start color #ed5fa6, 2, end color #ed5fa6 | equals, start color #0d923f, 1, end color #0d923f, plus, start color #ed5fa6, 2, end color #ed5fa6, plus, start color #ed5fa6, 2, end color #ed5fa6, plus, start color #ed5fa6, 2, end color #ed5fa6 | ||
4 | start color #0d923f, 1, end color #0d923f, plus, 4, dot, start color #ed5fa6, 2, end color #ed5fa6 | equals, start color #0d923f, 1, end color #0d923f, plus, start color #ed5fa6, 2, end color #ed5fa6, plus, start color #ed5fa6, 2, end color #ed5fa6, plus, start color #ed5fa6, 2, end color #ed5fa6, plus, start color #ed5fa6, 2, end color #ed5fa6 |
We see that each time x increases by 1 unit, y increases by start color #ed5fa6, 2, end color #ed5fa6 units. This is because x determines the multiple of start color #ed5fa6, 2, end color #ed5fa6 in the calculation of y.
As stated above, the change in y that corresponds to x increasing by 1 unit is equal to the slope of the line. For this reason, the slope is start color #ed5fa6, 2, end color #ed5fa6.
Want to join the conversation?
No posts yet.