Main content
Algebra basics (ASL)
Course: Algebra basics (ASL) > Unit 7
Lesson 4: Factoring polynomials by taking common factors (ASL)- Factoring with the distributive property
- Factoring polynomials by taking a common factor
- Taking common factor from binomial
- Taking common factor from trinomial
- Taking common factor: area model
- Factoring polynomials: common binomial factor
- Factor polynomials: common factor
- Factoring by common factor review
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
Factoring polynomials by taking a common factor
Learn how to factor a common factor out of a polynomial expression. For example, factor 6x²+10x as 2x(3x+5).
What you should be familiar with before this lesson
The GCF (greatest common factor) of two or more monomials is the product of all their common prime factors. For example, the GCF of 6, x and 4, x, squared is 2, x.
If this is new to you, you'll want to check out our greatest common factors of monomials article.
What you will learn in this lesson
In this lesson, you will learn how to factor out common factors from polynomials.
The distributive property: a, left parenthesis, b, plus, c, right parenthesis, equals, a, b, plus, a, c
To understand how to factor out common factors, we must understand the distributive property.
For example, we can use the distributive property to find the product of 3, x, squared and 4, x, plus, 3 as shown below:
Notice how each term in the binomial was multiplied by a common factor of start color #0c7f99, 3, x, squared, end color #0c7f99.
However, because the distributive property is an equality, the reverse of this process is also true!
If we start with 3, x, squared, left parenthesis, 4, x, right parenthesis, plus, 3, x, squared, left parenthesis, 3, right parenthesis, we can use the distributive property to factor out start color #0c7f99, 3, x, squared, end color #0c7f99 and obtain 3, x, squared, left parenthesis, 4, x, plus, 3, right parenthesis.
The resulting expression is in factored form because it is written as a product of two polynomials, whereas the original expression is a two-termed sum.
Check your understanding
Factoring out the greatest common factor (GCF)
To factor the GCF out of a polynomial, we do the following:
- Find the GCF of all the terms in the polynomial.
- Express each term as a product of the GCF and another factor.
- Use the distributive property to factor out the GCF.
Let's factor the GCF out of 2, x, cubed, minus, 6, x, squared.
Step 1: Find the GCF
- 2, x, cubed, equals, start color #ca337c, 2, end color #ca337c, dot, start color #e07d10, x, end color #e07d10, dot, start color #e07d10, x, end color #e07d10, dot, x
- 6, x, squared, equals, start color #ca337c, 2, end color #ca337c, dot, 3, dot, start color #e07d10, x, end color #e07d10, dot, start color #e07d10, x, end color #e07d10
So the GCF of 2, x, cubed, minus, 6, x, squared is start color #ca337c, 2, end color #ca337c, dot, start color #e07d10, x, end color #e07d10, dot, start color #e07d10, x, end color #e07d10, equals, start color #0c7f99, 2, x, squared, end color #0c7f99.
Step 2: Express each term as a product of start color #0c7f99, 2, x, squared, end color #0c7f99 and another factor.
- 2, x, cubed, equals, left parenthesis, start color #0c7f99, 2, x, squared, end color #0c7f99, right parenthesis, left parenthesis, x, right parenthesis
- 6, x, squared, equals, left parenthesis, start color #0c7f99, 2, x, squared, end color #0c7f99, right parenthesis, left parenthesis, 3, right parenthesis
So the polynomial can be written as 2, x, cubed, minus, 6, x, squared, equals, left parenthesis, start color #0c7f99, 2, x, squared, end color #0c7f99, right parenthesis, left parenthesis, x, right parenthesis, minus, left parenthesis, start color #0c7f99, 2, x, squared, end color #0c7f99, right parenthesis, left parenthesis, 3, right parenthesis.
Step 3: Factor out the GCF
Now we can apply the distributive property to factor out start color #01a995, 2, x, squared, end color #01a995.
Verifying our result
We can check our factorization by multiplying 2, x, squared back into the polynomial.
Since this is the same as the original polynomial, our factorization is correct!
Check your understanding
Can we be more efficient?
If you feel comfortable with the process of factoring out the GCF, you can use a faster method:
Once we know the GCF, the factored form is simply the product of that GCF and the sum of the terms in the original polynomial divided by the GCF.
See, for example, how we use this fast method to factor 5, x, squared, plus, 10, x, whose GCF is start color #0c7f99, 5, x, end color #0c7f99:
Factoring out binomial factors
The common factor in a polynomial does not have to be a monomial.
For example, consider the polynomial x, left parenthesis, 2, x, minus, 1, right parenthesis, minus, 4, left parenthesis, 2, x, minus, 1, right parenthesis.
Notice that the binomial start color #0c7f99, 2, x, minus, 1, end color #0c7f99 is common to both terms. We can factor this out using the distributive property:
Check your understanding
Different kinds of factorizations
It may seem that we have used the term "factor" to describe several different processes:
- We factored monomials by writing them as a product of other monomials. For example, 12, x, squared, equals, left parenthesis, 4, x, right parenthesis, left parenthesis, 3, x, right parenthesis.
- We factored the GCF from polynomials using the distributive property. For example, 2, x, squared, plus, 12, x, equals, 2, x, left parenthesis, x, plus, 6, right parenthesis.
- We factored out common binomial factors which resulted in an expression equal to the product of two binomials. For example:
While we may have used different techniques, in each case we are writing the polynomial as a product of two or more factors. So in all three examples, we indeed factored the polynomial.
Challenge problems
Want to join the conversation?
No posts yet.